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Department of Statistics 
The Wharton School 

University of Pennsylvania 
 
Statistics 621               Fall 2003 

Module 3 
Inference about the SRM 

 

Mini-Review: Inference for a Mean  
 
An ideal setup for inference about a mean assumes normality, 
 

y1,…, yn  iid  ~ ),( 2
yyN σµ  

 

where y   is used to estimate  µy. 

 
What is meant by the sampling distribution of y ? 

 
“Astonishing Fact #1”  The sampling distribution of y  is 
 

2~ ( , / )y yy N nµ σ  
 
The standard error of y  is SE( y ) = /ys n  

 
y  ± 2 SE( y )  are approx 95% CI limits for µy  

 
For testing H0: µy = c  vs  H1: µy ≠ c,   t ratio =  ( y  − c) /SE( y )   
 

if  |t ratio| > 2   or   p-value < .05   or   95% CI does not 
contain c,  reject H0  at the .05 level of significance.    
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Sampling Distributions in Regression 
For data (x1, y1),…, (xn, yn) generated with the SRM,  
 

yi =β0 + β1xi + εi ,    i = 1,…, n   
ε1,…,εn  iid ~ 2(0, )N εσ  

 
What is meant by the sampling distributions of 0β̂  and 1̂β ? 
 
 
 

How could you use the simulation in utopia.jmp to generate 
these sampling distributions? 

 
 
“Astonishing Fact #2” The sampling distribution1 of 1̂β  

1) has mean E( 1̂β ) = β1 

2) has standard deviation SD( 1̂β ) = 1
( )SD xn

εσ ×    

3a) is exactly normal  
3b) is approximately normal even if the errors ε1,…,εn  are not 
normally distributed 
 
 
Note: The sampling distribution of 0β̂  has the same properties 
but with a slightly different formula for SD( 0β̂ ) 

————————————————— 
1 More precisely, this result refers to the sampling distribution when y1,…,yn vary, but the values 
of x1,…,xn are treated as fixed constants that are the same for every sample.  Things work out 
similarly even if the xi are random. 
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Inference about β0 and β1 

Typically the intercept β0 and slope β1 are estimated by 0β̂  and 

1̂β , and the standard errors of 0β̂  and 1̂β  are given2 by JMP. 
 
We’ll denote them by SE( 0β̂ )  and SE( 1̂β ).   

 
Confidence Intervals 
  
 Approximate 95% CI's for β0 and β1 are given by 
 

)ˆ(2ˆ
00 ββ SE±     and     )ˆ(2ˆ

11 ββ SE±  

 
Hypothesis Tests 

 For H0: β0 = c  vs  H1: β0 ≠ c,,  t ratio = 0

0

ˆ
ˆ( )
c

SE
β

β
−   

 For H0: β1 = c  vs  H1: β1 ≠ c,,  t ratio = 1

1

ˆ
ˆ( )
c

SE
β

β
−  

 
If  |t ratio| > 2   or   p-value < .05   or   95% CI does not 
contain c, reject H0  at the .05 level of significance.    

 
 H0: β1 = 0  is the usual null hypothesis of interest. Why? 
 
 

————————————————— 
2 These are obtained by simply substituting RMSE  for σε   in the formulas for the standard 
deviations of their sampling distributions. 
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JMP provides the details: estimates, SE's, t statistics, and p-
values for inference about β0 and β1 
 

Example 
Consider inference for β0 and β1 in the diamond regression.  
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Here, β0 and β1 are estimated by  
 
  0β̂  ≈ -259.6           and          1̂β  ≈ 3721.0 
 
 
The standard errors of these estimates are 
 
  SE( 0β̂ ) ≈ 17.3       and         SE( 1̂β )  ≈ 81.8      
 
 
Approximate 95% confidence interval limits for β0 and β1 are  
 
      -259.6 ± 2 (17.3)      and       3721.0  ± 2 (81.8)    
      
 
Should the hypothesis H0: β1 = 0 be rejected? 
 
 Yes, because  t = 45.5 > 2  or  because p-value < .0001 
 
 
Should the hypothesis H0: β1 = 3800 be rejected? 
 
 No, because |t| = |3721.0 – 3800|/81.8 =  .96 < 2 
 
 
Why is it interesting that H0: β0 = 0 can be rejected? 
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Suppose that instead of the full diamond.jmp data set, we only 
had the 28 observations for which Weight ≤ .18.   
 
The LS regression with these 28 observations yields 
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Summary of Fit
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Parameter Estimates

Linear Fit
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How has the regression output changed? 
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Confidence Intervals for the Regression Line 
 

“Where does the true population regression line lie?” 
“What is the average price for all diamonds of a chosen 

weight?” 
 
After running a regression based on (x1, y1), …, (xn, yn), each 
point ˆ( , )xx y  on the LS regression line  

0 1
ˆ ˆˆxy xβ β= +  

is an estimate of the corresponding point (x, µy|x) on the true 
regression line 

µy|x =β0 + β1x 
 
 
 
The estimate ˆxy  is a statistic with a sampling distribution. 
 
An astonishing fact again comes to the rescue – the sampling 
distribution of ˆxy  is approximately normal with mean µy|x and a 
standard error SE( ˆxy ) that can be computed. 
 
An approximate 95% CI for µy|x is obtained as 

 
)ˆ(2ˆ xx ySEy ±  
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JMP provides3 a graph of the exact 95% CIs for µy|x over the 
whole line. 
For the regression on the smaller diamond data, these confidence 
bands are seen to be 
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What happens to the 95% CI for the true regression line x as you 
get farther away from x ? 
 
 
This phenomenon can be thought of as a “Statistical 
Extrapolation Penalty”.4   
 
Note that the LS line for the full data set is contained within the 
confidence bands.  Why is this reasonable?  

————————————————— 
3 After executing the Fit Line subcommand, right click next to “⎯Linear Fit” and select Confid 
Curves Fit from the Pop-up menu to obtain this plot.     
4 Even though the intervals widen as we extrapolate, as the output shows, this penalty is rather 
optimistic because it assumes that the model we have fit is correct for all values of x.  If you 
price a big diamond with this model, you’ll see that the interval is not nearly wide enough! 
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Predicting Individual Values with a Regression 
 
“Where will a future value of the response y lie?” 

“How much might I pay for a specific 1/4 carat diamond?” 
 

After running a regression based on (x1, y1), …, (xn, yn), each 
point ˆ( , )xx y  on the LS regression line  

0 1
ˆ ˆˆxy xβ β= +  

is an estimate of the corresponding future point (x, yx) generated 
by the SRM 

yx = β0 + β1x + εx 
 
What’s the difference between yx  and  µy|x   on pg 3-7? 
 
 
 
 
 
To accommodate the extra variation of yx due to εx,  an 
approximate 95% prediction interval (PI) for yx is obtained as 
 

22)ˆ(2ˆ RMSEySEy xx +±  
 
 
This interval has the interpretation that  
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JMP provides5 a graph of the exact 95% PIs for yx over the 
whole line.  For the regression on the smaller diamond data, 
these prediction bands are seen to be 
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These prediction bands are wider than the confidence bands for 
the true regression line on pg 3-8. Why is this reasonable? 
 
 
Extrapolate with caution!   
 
If x is not in the range of the data, predicting yx is especially 
dangerous because the linear model may fail.  Consider pricing 
the Hope Diamond (at 45.5 carats) with this model.  

Another example: Average systolic blood pressure in people is 
well approximated by  y  ≈  118 + .0043 x2  for  20 ≤ x ≤ 60 
where  y = blood pressure and x = age.   

But when x = 1000,   y =

————————————————— 
5 After executing the Fit Line subcommand, right click next to “⎯Linear Fit” and select Confid 
Curves Indiv from the Pop-up menu to obtain this plot.     
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R2 Index of Performance 

 
The next piece of output that we’ll consider from the full 
diamond regression, is  

 
RSquare = .978 
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This number is called R2 and is widely interpreted as 
 

“the proportion of variation explained by the regression” 
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The intuition behind R2 is based on the decomposition6 
 
  Responsei = Signali + Noisei 
 
or 

ˆi i iy y e= +  
 
An Amazing Identity 
When the signal comes from a regression, it turns out that 

222 )ˆ()ˆ()( iiii yyyyyy −+−=− ∑∑∑  
 
This identity is often written as 
 

Total SS =   Model SS + Residual SS 

where SS reads “Sum of Squares” .  Sometimes7 the Residual SS 
is called the Error SS, but since it comes from the residuals, that 
name seems better. 
What do these SS quantities measure?   
 

        
 
————————————————— 
6 This language comes from electrical engineering.  In that context, the signal might come from a  
radio or TV station. The unwanted things that contaminate your reception are called noise. 
7 In particular, JMP calls the Residual SS the Error SS. 
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R2 is defined by either of the two expressions     
 

2   1
  

Model SS Residual SSR
Total SS Total SS

= = −  

 
which is “the proportion of the total variation explained by the 
regression”.    
 
Note how R2 compares Total SS and Residual SS to capture the 
usefulness of using  x to predict y. (p 92) 8 
 
R2  is often used as a measure of the “effectiveness” of a 
regression.   
 
Advice:  Resist the temptation to think of R2 in absolute terms.   
Regression is a statistical tool for extracting information from 
data.  Its value depends on the value of the information 
provided. 
 
RMSE also provides useful information about the effectiveness 
of a model.    
 
 
Do R2 and RMSE answer the same question about a model? 
 
 
 
 
Curious (but useful) Fact:  In simple regression R2 = r2, where as 
in Stat 603, r is the sample correlation.   

————————————————— 
8 These page numbers refer to the BAR casebook. 
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The Impact of Outliers: Another Example 
Outliers can impact inferences from regression in a dramatic 
fashion. 
 
Value of Housing Construction   (p 89)  
 
The data set cottage.jmp gives the profits obtained by a 
construction firm and the square footage of the properties.   
 
The scatterplot shows that the firm has built one rather large 
“cottage”.  This is an “outlier” in the sense that it is very 
different from the rest of the points. (p 90) 
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      18

Summary of Fit

Intercept
Sq_Feet
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Std Error
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What do R2 and RMSE tell us about this model? 
 
What is the interpretation of the 95% CI for the slope?   
 
What is the interpretation of the 95% CI for the intercept?   
 
Without the Large Property 
 
How does the fitted model change when we set aside the large 
cottage and refit the model without this one? (p 94) 
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Summary of Fit
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What has happened to R2?  To RMSE?  To the CI for the slope? 
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Which version of this model should the firm use to estimate 
profits on the next large cottage it is considering building? 
 
What additional information about these construction projects 
would you like to have in order to make a decision? 
 
 

Leverage and Outliers 
 
The dramatic effects of removing the outlying large “cottage” in 
this last example illustrates the impact of a leveraged outlier. 
 
Leverage: points that are far from the rest of the data along the 
x-axis are said to be leveraged.  BAR gives the formula for 
leverage on page 63. 
 
Heuristic: Moving away from the center of the predictor impacts 
the possible effect of a single observation in regression much 
like moving your weight out to the end of a see-saw.  As your 
weight moves farther from the fulcrum, you can lift more weight 
on the other side. 
 
Leverage is a property of the values of the predictor, not the 
response. 
 
Leveraged points are not necessarily bad and in fact improve the 
accuracy of your estimate of the slope.9  Just recognize that you 
are giving some observations a bigger role than others. 

————————————————— 
9 In particular, leveraged observations are those that contribute the most to the variation in the 
predictor.  Since these points spread out the values of the predictor, they make it easier to 
estimate the slope of the regression.  
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Take-Away Review 
Inference for regression benefits from the same sort of 
“astonishing facts” that made inference for means possible in 
Stat 603. 
 
In particular, the sampling distribution of the slope is 
approximately 

1̂β  ~ N(β1 , 
1
( )SD xn

εσ × )  

 
So, we can form confidence intervals as before, forming the 
intervals as before, namely as [estimate ± 2 SE(estimate)]. 
 
We can use these same ideas to construct confidence intervals 
for the average of the response for any value of the predictor as 
well as for a specific response. 
 
The R2 summary measures the proportion of the variation of the 
response “explained” by the model; the RMSE shows the SD of 
the noise that remains. 
 
Next Time 
Getting more data gives you better estimates of the slope and 
intercept, but has little impact on the accuracy of prediction. 
 
The only way to improve R2 and reduce RMSE is to add more 
predictors.  This is the domain of multiple regression. 


